Correlating Bulk Properties of Reactor-extracted Gilsocarbon Graphite with Pore Distributions Measured by X-ray Tomography

Matthew S.L. Jordan

INGSM September 2019
Contents

1. Background
2. Samples and tomography
3. Theory
4. Preliminary Results
5. Summary
Background

• Material properties are controlled by the microstructure

• Pore structures believed to control some material properties
 • Volume, size, shape and connectivity are all important

• Pore structures may be measured by volumetric imaging techniques
 • In 3D many techniques are destructive

• Desire to understand how the pore structure evolution of graphites control their properties
 • Understand current graphites
 • Help to predict the properties of Gen IV+ graphites

Figures: https://tinyurl.com/y453dxa2 https://tinyurl.com/y4xabdzd https://tinyurl.com/y3zp7lsv Creative Commons 2.0
Contents

1. Background

2. Samples and tomography

3. Theory

4. Preliminary Results

5. Summary
Installed set samples

- AGR installed set cores with weight-loss range 3-8 % (Dose: 18-22 x10^{20} n.cm^{-2} EDN) from Hinkley Point B

- Machined into large beams, fractured and re-machined into 6 x 6 x 19 mm beams
 - Beams selected with highest, median and lowest large beam properties
 - Plain, U-notched and chevron notched

- XCT-imaged in Bruker SkyScan 1273
 - Resolution = 2.97 μm.voxel^{-1}
Blackstone samples

- Ex-AGR samples re-irradiated in Blackstone
 - Mostly Hinkley Point B and Hunterston B material
 - Weight loss: 14-53 %

- Range of geometries
 - Cuboids and cylinders
 - Dimensions in range 6 – 12 mm

- XCT-imaged using the laboratory scanner at NRG, Petten
 - Resolution = 2.50 μm.voxel⁻¹
Aim

To identify and characterise the pore networks from X-ray tomography of graphite, to compare to trends in the physical properties.

The segmentation method should be:

• Robust and work in 3-D
• Have minimal analyst interaction (reducing analyst bias through automation)
• The underlying model should be as simple as possible
• Use open source and well understood tools
• Maximise identification of small pores
• Work for porosities from 0 to over 50 %
Contents

1. Background
2. Samples and tomography
3. Theory
4. Preliminary Results
5. Summary
Theory – X-ray tomography

- X-rays absorption is dependent on density and chemical composition

- In X-ray tomography (XCT), transmission maps (radiographs) are captured then reconstructed to 3-D images

- X-ray map is a virtual microstructure, and a pore map if chemistry is constant

- However, a 2-phase material will have a broad range of grey-scale values
Segmentation Theory

- In the tomograph, voxels in bulk material are bright, and pores are dark.

- Want to identify material and pores (binary segmentation).

- Intuitive by eye, but algorithmically difficult to avoid false results.

![Tomographic slice](image)

Material

Pore

Binary segmented slice

Phase 1 (white) = material
Phase 2 (black) = pore

![Area histogram](image)

Frequency: 0 to 255

Greyscale: 0 to 255

Threshold
Segmentation Theory (2)

• Real image is voxelated

• Greyscale distributions are broadened and overlap

• Example broadening effects:
 • X-ray beam hardening
 • Variable density
 • Partial volume
 • Noise

Simple example – 1 pore, ‘realistically’ imaged

![Area histogram](image)

- Frequency
- Greyscale
- Decreasing length scale
- Low-pass threshold
Segmentation Rule

- Single-stage thresholding has no suitable value \((t_1)\)

- For multistage process, select \(t_1\) to capture:
 - All pores (no false negatives)
 - Some material as pores (false positives to filter later)

- Can the distribution shape guide the selection?
 - Bi-modal and each \(~\)Gaussian
 - Ratio of the material and pore modes changes with weight loss

Segmentation rule:

\[
t_1 = \text{Material Mode} - k \cdot \Delta
\]

- \(k = 0.30\) (trial and error for a single sample)

Here, an analyst would select \(t_1\) just below distribution mode, but unclear exactly where

\[
\text{Distribution mode} \approx \text{material mode}
\]

Assumption:

Chemistry is constant, so difference in modes \((\Delta)\) is constant, regardless of tomography conditions
t_1 determination – real data

Original tomograph Peak fitting Initial segmentation (not complete!)
Filtering

After the initial threshold, dataset is filtered using automatic routine, and individual pores characterised

- Coded in FIJI, using MorphoLibJ and 3D IJ Suite
- Basic image tools, applied to obtain 3-D physical results
- Dimension limit to >10 μm

Selecting k (and hence t_1) is the main uncertainty in calculating the total pore volume fraction, f_{TPV}

- Estimated by considering sensitivity on f_{TPV}
- Half the difference over range $f_{TPV}(t_1 - 3) \rightarrow f_{TPV}(t_1 + 3)$
Segmentation example – installed set

<table>
<thead>
<tr>
<th>Original microstructure</th>
<th>Final segmentation</th>
<th>Positive mask</th>
<th>Negative mask</th>
</tr>
</thead>
</table>

Hinkley Point B Graphite, with weigh loss < 8 % (Porosity < 25 %)
Segmentation example – Blackstone

<table>
<thead>
<tr>
<th>Original microstructure</th>
<th>Final segmentation</th>
<th>Positive mask</th>
<th>Negative mask</th>
</tr>
</thead>
</table>

Segmented with the **same rule** \((k = 0.30)\)

Hinkley Point B Graphite, with 31 % weight loss (43 % porosity)
Contents

1. Background
2. Samples and tomography
3. Theory
4. Preliminary Results
5. Summary
Pore properties

- Open pore volume fraction (f_{OPV}) is based on the largest detected pore
 - Calculate closed pore volume, (f_{CPV})
 \[f_{CPV} = f_{TPV} - f_{OPV} \]

- Pores characterised by several measures
 - Only a subset of the closed pores are characterised
 - Measure eg size, surface area, and orientation, sphericity

- Pore components all scale linearly with weight loss
 - Higher weight loss \Rightarrow lower f_{CPV}
Property correlation – installed sets

- To examine trends, fracture properties taken as averages of larger beams or cores

- Weight loss range limited compared to uncertainty

- No clear trends with f_{TPV}, f_{OPV} or f_{CPV} against any properties
 - Strength and DYM may trend with f_{OPV} component

<table>
<thead>
<tr>
<th>Property</th>
<th>f_{TPV}</th>
<th>f_{OPV}</th>
<th>f_{CPV}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fracture Toughness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crack Initiation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Young's Modulus</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pore properties - Blackstone

Installed set samples

\[y = 0.9x + 18.6 \]

\[y = 1.0x + 16.2 \]

\[y = -0.0x + 2.4 \]
Property correlation – Blackstone

- DYM [GPa]
- CTE [K\(^{-1}\)]

Graph showing the correlation between Porosity [%] and DYM [GPa], and Porosity [%] and CTE [K\(^{-1}\)].
Limitations

Code is not yet robust for every sample yet and requires post filtering by analyst.
Contents

1. Background
2. Samples and tomography
3. Theory
4. Preliminary Results
5. Summary
AGR installed set and Blackstone samples were imaged by XCT prior to fracture

Accompanying PIE measurements were made

Pores segmented by updated semi-automatic method and characterised

Method based on simple statistical rule and applicable to whole series

Lim

Property-porosity correlations examined

Linear trends in f_{TPV}, f_{OPV} and f_{CPV} with weight loss

High scatter and few samples makes discerning trends difficult
Next steps

• Improve the high ratio stability of algorithm

• Apply to ex-AGR samples (again)

• Complete enhanced characterisation of available Blackstone samples at NNL

• Understand pore evolution processes

• Correlate further properties
 • Pore size and volume distribution changes
This work was undertaken within the Innovate UK project “The Influence of Creep and Geometry on Strength of Irradiated Graphite components” (102075) with project partners EDF Energy and the University of Manchester, and also NNL’s Core Science programme.

AGR installed sets were kindly provided by EDF Energy Ltd.

Measurements were undertaken in the NNL Windscale and Central Laboratories, and NRG Petten laboratory, and thanks for assistance in data collection and analysis are given to A. Qaisar, H. Preston, M. Crelling, T. McGrady, K. Verrall, J. Bradley and P. Ramsay.

Thanks are given to all those who collaborated in this project, including those at EDF Energy, the University of Manchester, NNL, Innovate UK, NRG and FNC.

The views presented here do not necessarily reflect those of EDF Energy, the University of Manchester or Innovate UK.