Treatment of the Thetis reactor graphite at Belgoprocess

INGSM 2019
Belgoprocess

- Operational link in the waste management of radioactive waste in Belgium
 - Treatment, conditioning & temporal storage

- Mission:
 - Processing of radioactive waste
 - Decommissioning of obsolete nuclear sites and installations
 - Decontamination of materials
 - Developing and valorisation of nuclear know-how
Table of content

1. Thetis introduction
2. Irradiated graphite characteristics
3. Evaluation of possible treatment pathways
4. Treatment
5. Conclusion and operational feed-back
Table of content

1. Thetis introduction
2. Irradiated graphite characteristics
3. Evaluation of possible treatment pathways
4. Treatment
5. Conclusion and operational feed-back
1. Thetis introduction

- Nuclear sciences institute of the Ghent University
- LEU fuel type UO$_2$ (max. operating power 250 kW)
- Production of radio-isotopes and activation analysis
- In service from 1967 until 2003, decommissioned in 2015
- Neutron reflector graphite was treated by Belgoprocess
Table of content

1. Thetis introduction
2. Irradiated graphite characteristics
3. Evaluation of possible treatment pathways
4. Treatment
5. Conclusion and operational feed-back
2. Irradiated graphite characteristics

- 8 graphite blocks
 - Average dimensions: 0.5m x 0.5m x 0.7m
 - Gross mass ~ 300 kg each
 - Aluminium cladding ~ 2 to 5 mm

- Characterization (by SCK•CEN)
 - Stored Wigner energy ≈ 100 to 250 J/g
 - No significant amount allowed by regulator
 - Maximum dose rate < 2 mSv/h
 - 60Co, 152Eu, 154Eu, 134Cs
 - Major contribution in (activated) aluminum
 - Estimation of radiological content
 - Nuclide vector developed through modelling
 - Safety-relevant for disposal/treatment: 3H, 14C, 36Cl
2. Irradiated graphite characteristics

- Limited specific measurements of some important parameters
 - Wigner energy
 - Radioactivity content

- Simple approach for sampling
 - Limited amount of graphite allows evaluation through conservative samples
 - No safety plates
 - Maximum neutron flux 10 cm
2. Irradiated graphite characteristics

- **Wigner energy**
 - According to IAEA TECDOC-1521 (2006):

 "It is not acceptable to store or dispose of graphite containing significant releasable stored energy."

- **DSC-analysis (Differential Scanning Calorimetry) for 2 samples**
 - Measurement
 - \(\text{N}_2 \) @ 20 °C/min
 - Up to 600 °C
 - Repeat (2nd run)
 - Stored energy eliminated at [120°C - 550°C]
 - Maximum stored energy \(\approx 250 \text{ J/g} \)
2. Irradiated graphite characteristics

- **Radioactivity content**
 - Specific radiochemical analysis 3H, 14C and 36Cl
 - Conservative sampling at 10 cm depth (at hotspot area)
 - Assumption of simplified activation profile for mean activity content
 - E.g. 14C through dominant formation mechanism $[^{13}\text{C} (n,\gamma) ^{14}\text{C} @ 200 \text{ keV}$

![Graph showing activity content vs depth in graphite matrix](image-url)
2. Irradiated graphite characteristics

- Radioactivity content (cont’d)
 - Evaluation shows underestimation
 - Impact needs to be evaluated
 - Take this into account in treatment scenario
 - Representativeness (conservative?)

<table>
<thead>
<tr>
<th></th>
<th>Bq/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-3</td>
<td>Declaration: 7.15E+04</td>
</tr>
<tr>
<td></td>
<td>C-14: 2.31E+03</td>
</tr>
<tr>
<td>Cl-36</td>
<td>7.84E+01</td>
</tr>
</tbody>
</table>
Table of content

1. Thetis introduction
2. Irradiated graphite characteristics
3. Evaluation of possible treatment pathways
4. Treatment
5. Conclusion and operational feed-back
3. Evaluation of possible treatment pathways

- Most relevant pathways (literature review)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Installation available?</th>
<th>Wigner energy</th>
<th>Volume reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditioning as such</td>
<td>Yes</td>
<td>Still present</td>
<td>No</td>
</tr>
<tr>
<td>Conditioning after annealing</td>
<td>No</td>
<td>Eliminated</td>
<td>No</td>
</tr>
<tr>
<td>Incineration</td>
<td>Yes</td>
<td>Eliminated</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Incineration was considered best option
 - No investments/licensing required
 - Stored Wigner energy is eliminated
 - Limited volume reduction
 - Radiological content in agreement with license of LLW incinerator (CILVA)
 - Size reduction of graphite blocks necessary
Table of content

1. Thetis introduction
2. Irradiated graphite characteristics
3. Evaluation of possible treatment pathways
4. Treatment
5. Conclusion and operational feed-back
4. Treatment

- LLW incinerator (CILVA)
4. Treatment

- Incineration in LLW incinerator (CILVA)
 - Graphite packages of max 5 kg
 - Treated together with standard burnable waste
 - Mixing needed in order to avoid
 - Fluctuations in temperature of primary combustion chamber
 - Difficulties in ash removal (blockage of augers)
4. Treatment

- Need for pre-treatment to fit in existing process
 - to eliminate aluminum cladding
 - to feed the incinerator
 - to avoid operational issues
 - optimize combustion process

- Cutting and size reduction
Table of content

1. Thetis introduction
2. Irradiated graphite characteristics
3. Evaluation of possible treatment pathways
4. Treatment
5. Conclusion and operational feed-back
5. Conclusion and operational feedback

- Cutting and size reduction ...
 - is absolutely necessary to avoid process issues
 - is hard work
 → it takes about 2-3 days to do 1 block
- No incidents occurred during treatment
- Major advantages of incineration
 - Stable and homogenous waste form, ready for surface disposal
 - Wigner energy was eliminated
 - Volume reduction
5. Conclusion and operational feedback

- Monitoring during incineration campaign
 - 3H is captured (99.5%) in scrubber
 - 14C is released (> 99%) in the stack
 - All safety, operational and radiological limits were respected

- Incineration of small amounts of graphite with stored Wigner energy and limited amounts of 14C will result in final waste packages that comply with the waste acceptance criteria of surface disposal
Thank you for your attention